Other keras examples¶
Example: multi-class classification¶
MNIST is an example of multi-class classification.
model = Sequential()
model.add(Dense(64, activation='relu', input_dim=20)
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])
Example: binary classification¶
model = Sequential()
model.add(Dense(64, input_dim=20, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy'])
Integratin Keras with scikit_learn¶
from tesorflow.keras.wrappers.scikit_learn import KerasClassifier
def create_model():
model = Sequential()
model.add(Dense(64, input_dim=20, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
estimator = KerasClassifier(build_fn=create_model, epochs, verbose=0)
cv_scores = cross_val_score(estimator, labels, cv=10)
print(cv_scores.mean())
Trying to predict political parties with Keras¶
Python notebook: https://github.com/daviskregers/data-science-recap/blob/main/33-using-keras-to-predict-political-parties.ipynb